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Does cognitive training work?                                                          Mercredi 29 Janvier 10-12 
Chess players, musicians and video-game players tend to be more intelligent than individuals not engaged in 
these activities. It has thus been proposed than practising these activities improves cognitive ability and fosters 
educational achievements. Similar claims have been made with respect to other activities such as working 
memory training and brain training. This talk will review several meta-analyses performed to address these 
claims. It will also discuss the results of  a second-order meta-analysis (a meta-meta-analysis) that examines all 
these domains simultaneously. The results are very consistent across domains: whilst there is evidence for near 
transfer (i.e. transfer to similar tasks), there is very little evidence for far transfer (i.e., transfer of  a set of  skills 
between domains only weakly related to each other). When placebo effects and publication biases are controlled 
for, the overall effect size for far transfer is essentially zero. These results cast serious doubts on the effectiveness 
of  cognitive training for improving overall cognitive ability. They are also theoretically important: they support 
theories of  learning and expertise such as chunking and template theories that emphasise domain-specific 
knowledge, and strongly suggest that the lack of  generalisation of  skills acquired by training is an invariant of  
human cognition.  

The CHREST cognitive architecture                                             Vendredi 31 Janvier 10-12 
This presentation will provide an introduction to the CHREST cognitive architecture and will show how this 
architecture can account for a number of  empirical data on the development of  expertise and the acquisition of  
language. First, the components of  the model will be presented, with a focus on its learning mechanisms, which 
are based on the notion of  chunking. Then experiments on expertise in chess will be discussed, and it will be 
shown that computer simulations with CHREST can explain several key results.  Simulations will also show that 
the architecture explains data on the development of  language (e.g. acquisition of  syntactic structures). Finally, 
the presentation will highlight the characteristics of  CHREST allowing it to explain these empirical data. These 
characteristics include the idea of  self-organisation, the emphasis on bounded rationality, the presence of  a 
perception-learning-perception cycle, and the use of  inputs representative of  the domain to be learned.  
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with a test for the mismatch, and the stimulus 
and old image are used as the basis of new leaf
nodes (Fig. 2c).

T ime parameters
One of the strongest features of EPAM is that it
includes approximate but absolute parameters that
allow quantitative predictions to be made about the
rate of learning and information retrieval. Some of
these parameters characterize capacity limits16

(e.g. between 3 and 7 items in STM), but most
quantify the time required for key cognitive
processes: traversing a node during sorting takes
about 10 ms, creating a new node takes about 10 s,
and adding information to an extant node takes about
2 s. These parameters have been derived from both
empirical data and architectural considerations15–17.

Domains of application
EPAM has applications to various phenomena in
verbal learning (Box 2). EPAM has also been used to

explain the role of context in letter perception18, 
the role of strategies in concept formation19, and the
acquisition of chess expertise20,21. In particular, 
the EPAM mechanisms for the acquisition of chess
expertise led to the development of the chunking
theory itself4,22, which has had a substantial impact
on research into expertise in general23. Some recent
work on chess expertise is illustrated in Box 1.

The main limitations of early versions of EPAM
include the slow storage of knowledge into LTM and
the lack of specific mechanisms for creating semantic
knowledge. The former assumption seems valid
enough for domains where individuals have a low
level of expertise, such as in verbal learning.
However, research in expert behaviour has shown
that experts can rapidly store material from their
domain of expertise24,25. The next section describes
CHREST, which is one of two recent extensions to
EPAM designed to remedy these shortcomings
(similar changes have been included in the other
extension, EPAM-IV; Ref. 26).

CHREST
CHREST (Chunk Hierarchy and REtrieval
STructures)17,27–30 features a number of additions to
EPAM’s basic learning mechanisms, providing a
greater degree of self-organization and adaptation 
to complex data. This section summarizes some of the
new mechanisms within CHREST, before describing
some applications.

Components
The general organization of CHREST is similar to
that of earlier versions of EPAM (see Fig. 1). In
addition, all the major mechanisms of EPAM have
been retained within CHREST: information in LTM
is indexed through a discrimination network;
LTM learning occurs through the processes of
discrimination and familiarization; information
must be stored within STM before it can be compared
or used; and all time parameters for the learning and
retrieval mechanisms are retained. One small
difference is that every node within CHREST’s
discrimination network can contain an image
(compare Figs 2a and 3a). The major changes are in
the form of additional mechanisms for creating
lateral links between nodes, and for elaborating
information within chunks to form more complex
schemata; these changes improve the richness of
semantic memory without affecting important
properties of the previous simulations.

Lateral links. A lateral link is a semantic association
between two nodes within the discrimination
network31; some examples are illustrated in Fig. 3.
Learning a lateral link can only occur when the
system’s STM contains a pointer to the relevant
nodes within the discrimination network; this
constraint ensures that links between nodes are
based only on a spatial or temporal contiguity, thus
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Fig. 1. Overview of the
EPA M/CHREST
architecture (see text
for details).
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Fig. 2. EPA M-mechanisms. (a) An example discrim ination network.
The dark circles represent the nodes w ithin the network; solid lines
represent the test links between pairs of nodes, w ith the test letters
shown. Ellipses contain images for the leaf nodes. Note that images
may contain more or less information than is contained in the path of
tests from the root node. (b) Presenting ‘the dog ’ leads to
‘fam iliarization’; that is, information is added to the current node. Note
that the entire word ‘dog ’ can be added to the image, as it appears
elsewhere in the network. (Only the part of the network shown in red is
altered.) (c) Subsequently presenting ‘the cat’ leads to discrim ination;
that is, extra links and nodes are added to the network. Note that the link
can use whole words as tests if they appear elsewhere in the network.
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The dark circles represent the nodes w ithin the network; solid lines
represent the test links between pairs of nodes, w ith the test letters
shown. Ellipses contain images for the leaf nodes. Note that images
may contain more or less information than is contained in the path of
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altered.) (c) Subsequently presenting ‘the cat’ leads to discrim ination;
that is, extra links and nodes are added to the network. Note that the link
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