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Description of the topic: 
Optimizing parameters of computer models implementing some complex physical 
phenomenon is a classic problem in Statistics, which finds numerous applications in various 
fields such as climatology, environmental sciences, biology, and mechanical engineering [1]. 
This task is usually challenging for a number of computational and statistical reasons. Running 
the computer model for any given parameters is typically computationally expensive, making 
it unfeasible to use standard optimization tools. Also, the abstraction provided by the 
computer model can only be accurate to a certain degree, so that it is difficult to draw 
meaningful conclusions on the value of the optimal parameters [2].    
The framework of Bayesian calibration of computer models offers an established 
methodology to tackle such limitations [1]. In Bayesian calibration, computational difficulties 
are bypassed by emulating the response of the computer model with a surrogate statistical 
model, which is much cheaper to evaluate, and statistical limitations are addressed by 
explicitly accounting for the discrepancy between the computer model and the real 
phenomenon of interest. This yields an elegant framework to characterize the uncertainty in 
model parameters and in the predictions on unseen conditions [1,3].  
The modeling assumptions on the surrogate function and the discrepancy become of central 
importance in Bayesian calibration. In this context, we find two main challenges that require 
special care when using Bayesian calibration in practice:  



 

 

(i) when the computer model generates multiple responses, there is a difficulty in modeling 
the covariance structure of these variables, and this is particularly relevant for applications 
where such structure is domain knowledge; how can we encode dependencies among 
these in a meaningful way?  

(ii) The introduction of a discrepancy term in the formulation of Bayesian calibration poses 
some difficulties in being able to draw meaningful conclusions on the values of the 
parameters; how can we address the lack of identifiability of calibration parameters for 
these models?  

This project aims at advancing the state-of-the-art in these directions, by drawing from the 
literature on Bayesian deep learning. In particular, we will focus on the connections between 
Bayesian Deep Neural Networks and Deep Gaussian Processes [3,4], and revisit calibration 
models in light of recent works on Variational Autoencoders [5]. The project will focus on 
applications to climate simulations, with the intention of engaging with the Coupled Model 
Intercomparison Project (CMIP) [6] and/or collaborating with researchers in the network of 
collaborators of the two supervisors.   
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